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Abstract— Guiding robots can not only detect close-range
obstacles like other guiding tools, but also extend its range
to perceive the environment when making decisions. However,
most existing works over-simplified the interaction between
human agents and robots, ignoring the differences between
individuals, resulting in poor experiences for different users.
To solve the problem, we propose a data-driven guiding system
to cope with the effect brighten by individual differences. In our
guiding system, we design a Human Motion Predictor (HMP)
and a Robot Dynamics Model (RDM) based on deep neural
network, the time convolutional network (TCN) is verified to
have the best performance, to predict differences in interaction
between different human agents and robots. To train our
models, we collected datasets that records the interactions
from different human agents. Moreover, given the predictive
information of the specific user, we propose a waypoints selector
that allows the robot to naturally adapt to the user’s state
changes, which are mainly reflected in the walking speed. We
compare the performance of our models with previous works
and achieve significant performance improvements. On this
basis, our guiding system demonstrated good adaptability to
different human agents. Our guiding system is deployed on a
real quadruped robot to verify the practicability.

I. INTRODUCTION

As for blind and visually impaired people (BVIP), trav-
eling is necessary but difficult. There are many studies
dedicated to solving the task of guiding BVIP. The solutions
include intelligent white cane [1], intelligent wearables [2]
and etc. Among these solutions, guiding robots can not
only detect close-range obstacles like other guiding tools,
but also extend its range to perceive the environment when
making decisions, which contribute to its outstanding per-
formance. Besides, with the excellent maneuverability and
terrain adaptability [3], [4], quadruped robots have become
an excellent chassis for guiding robots.

However, individual differences among human agents can
lead to different guiding interactions. For instance, a tired
person may walk slower than an energetic person when being
guided with same tension(see Fig. 1). Previous researches
lacked the consideration of the individual differences, re-
sulting in stiff guiding performance. To eliminate individual
differences, human agents were asked to walk slowly at
the same speed. More concretely, the lack of considering
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Fig. 1: Different human agents are guided by our quadruped BVIP
guiding robot. Each of them has their own comfortable walking
speed, and our guiding system can flexibly adapt their differences.

individual differences leads to 2 problems: 1) the motions of
both the robot and the human agent after being towed are
predicted inaccurately; 2) the robot’s velocity cannot adapt
to different human agents’ velocities.

To address the problems, we propose a data-driven BVIP
guiding system to cope with the effect brighten by individual
differences. In our guiding system, we first use the position
of the robot and camera positioning technology to locate the
position of the human, and then plan the human route.

Precisely predicting different human agents’ motions is
the basis of motion planning in BVIP guiding task. Our
experiment proved that human’s velocity is related to the
received tensions in past periods. Thus, we propose a Human
Motion Predictor (HMP) that based on well-known neural
architectures, which can precisely predict human agents’
motions according to their received tensions. To train the
model, we collected a dataset which records the motion data
of different humans after being towed.

Next, to adapt different human agents’ comfortable speeds,
we propose a Waypoints Selector. The selector chooses
waypoints on the planned global path as the target positions
for human agents. The faster the human agent walks, the
greater the spacing between the selected waypoints.

Model Predictive Control (MPC) is then used to plan the
leash tensions and robot’s velocity which are required to
make human agents follow the selected waypoints. Besides
predicting the motions of human agents, we also establish a
Robot Dynamics Model (RDM) to describe robot’s motion
responds after being towed. A dateset that record robot’s re-
sponds after receiving different tensions from each directions
is collected to train the model. Our neural based models are
necessary to the MPC-based motion planner.

In experiments, we compared our models with previous
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Fig. 2: Overview of our BVIP guiding system.

researches. It can be concluded that our models achieved
significant performance improvements. On this basis, we
deployed our BVIP guiding system on a quadruped robot.
The synchronization between the robot and different human
agents is tested. It is demonstrated that our BVIP guiding
system has good adaptability to individual differences. our
contributions are summarized as follows,
• Considering the individual differences among human

agents can lead to different guiding interactions. we
propose the data-driven guiding system for BVIP. In our
system, In our guiding system, we design a AI-based
HMP and RDM to predict differences in interaction
between different human agents and robots.

• We propose a waypoint selector that works with motion
predictors and MPC to guide different people at a
comfortable pace.

• On the experimental side, we first validate the perfor-
mance improvements between our predictor and base-
lines, while analyzing the differences between three
well-known architectures in our task, resulting in the
factual results of TCN optimality. Secondly, we also
applied our system to real robots to verify its practica-
bility.

II. RELATED WORKS

A. Human Motion Prediction

The mainstream human motion predicting algorithms now
is coupled approaches. They focused on modeling multi-
agent interactions, which solves many problems shown by
decoupled approaches, such as reciprocal dance problem
[5]. Nanavati et al. [6] proposed a coupled human motion
predicting model for BVIP guiding task, which was based
on Markov Model. However, they ignored the impact of
the tension received by human agents. They also left the
individual differences amoung human agents out of consid-
eration. Although the model of Chen et al. [7] considered
the problems above, they over-simplified the model into
linear relation, which had no time-ordered. Further more,
both two models were hand-made, which leads to inaccurate
performance.

Herath et al. [8] proposed a model which was based
on well-known neural architectures, which predict human’s

position from IMU data. Their work is inspiring to our
human motion predicting task.

B. Robot Dynamics Model Establishment

Modeling specific platforms accurately is usually compli-
cated when using model-based controlling methods. Chen et
al. [7] over-simplified the effect of tension on the velocity of
quadruped robots into a velocity discount coefficient matrix,
assuming that only the force at the current moment would
cause a loss in the robot’s velocity. However, the model is
highly inaccurate.

We are inspired by previous works in other domains.
Gillespie et al. [9] used deep neural networks to learn the
nonlinear dynamics models of a soft robot, which is difficult
to manually model as quadruped robots. Spielberg et al. [10]
applied neural networks to modeling unknown friction in
automated driving task.

C. Global Path Correction

Traditional grid-based global path planning algorithms
generate paths consisting of adjacent grid points with equal
distances between them, such as A* algorithm and Dijk-
stra algorithm. Song et al.[9] proposed an algorithm called
smoothed A*, which eliminates the redundant points arise in
the traditional A* algorithm. They also used interpolation
to convert the discrete path into an analytical path. Our
algorithm is further improved upon this foundation.

III. METHODOLOGY

A. System Framework

As shown in Fig.2, our BVIP guiding system concludes 4
subsystems: Mapping and Localization System, Global Path
Planning System, Motion Planning System, and Actuator
Controlling System.

Firstly, Mapping and Localization System perceives the
environment. The map and the robot’s position are obtained
by the SLAM algorithm called Cartographer [11]. Human
agent’s position is obtained by the camera positioning the
AprilTags [12] on the torso.

Next, Global Path Planning System links the starting point
and the final target. We use the Dijkstra algorithm to plan
a global path, and smooth it with a series of smoothers



TABLE I: NOMENCLATURE

Symbol Description Dimension
θ yaw angle scalar
x position R3×1

v velocity R3×1

F tension R3×1

W sequence length of input scalar
N prediction horizon of MPC controller scalar
T the period of the controller scalar
�h human’s state parameter -
�r robot’s state parameter -
�∗ expectation -
�̃ prediction -
�t state parameter at time t -

introduced by Song et al. [13] We then select waypoints
as human’s target points using the waypoints selector we
proposed. When selecting waypoints, HMP is used to predict
human’s future speed, and our selected waypoints match the
speed trend.

Motion Planning System concludes 2 parts, human motion
planner and robot motion planner. Human motion planner is
used to plan the tension and direction required for human
to follow the planned path, while robot motion planner is
used to plan the walking speed and direction required to
achieve this tension. Both two planers use model predictive
control algorithm. In human motion planner, we use HMP
to predict the optimal robot target position and leash motor
target tension. To enable the robot to reach these target
positions after being pulled, RDM predicts the optimal
expected velocity for the robot controller in robot motion
planner.

Finally, to ensure that the robot reaches the expected
velocity, the Quadruped Robot Controller controls the torque
of the quadruped robot’s joint motors. The Leash Motor
Controller is responsible for ensuring that the leash reaches
the target tension by controlling the motor input current.

B. Human Motion Predictor

Precisely predicting different human agents’ motions is
essential. Du Toit and Burdick pointed out that the lack
of explicit human motion prediction results in uncertainty
explosion [14]. This phenomenon may yield the freezing
robot problem described by Trautman et al. [15]

Human agent’s motion is influenced by the guidance from
the guiding robot. We propose to use deep neural networks
to regress the sequential relationship between human’s ve-
locity and the received tension in the past. In the following
paragraph, we will introduce the data collection method, the
backbone architectures of our deep neural networks, and the
training method of our model.

1) Data Collection: Before collecting the data, we
mapped the experimental environment and pre-set several
paths. We invited 10 volunteers to hold the leash which
was attached to the guide robot, who guided them from the
starting point to the target. All volunteers were asked to wear
blindfolds, earmuffs and our positioning vest. When collect-
ing data, we used a four wheeled robot as its movement is

Fig. 3: Configuration of the guiding system. The human agent is
guided by the robot through a leash.

smoother than quadruped robots, resulting in less oscillation
and higher data quality.

Our sampling strategy was as follows: (a). The experiment
assistant remotely controlled the robot to follow the planned
path from the starting point to the target, and adjusted the
speed to maintain a certain distance from different human
agents. (b). The tension of the leash motor was randomly
changed every 10 seconds, ranging from 2N to 20N. (c). The
sampling frequency was set to be 50 Hz. (d). The collected
data included the position of the robot xr, the position of
the detected AprilTags, the magnitude of the tension F , and
the direction of the leash el.

After collecting the data, we further processed them. We
obtained the relative distance of the human agent and the
robot l by averaging the positions of the detected AprilTags.
Human agent’s positions were calculated by adding the
relative positions to the robot’s positions:

xh = xr + lel (1)

The sampled tension magnitudes was decomposed into or-
thogonal components:

Fh = −Fel = [Fhx , F
h
y , F

h
z ]

ᵀ
(2)

By taking the derivatives of human agent’s positions, we
obtained human agent’s velocities vh. (d). The data was
smoothed and filtered to acquire better quality. (e). The data
was segmented into the form:

(vhk−Wh+1:k,F
h
k−Wh+1:k|v

h
k+1) (3)

, which means human agent’s velocities and the received
tensions in past Wh timesteps were set to be the input of
HMP, and the velocity of next timestep were set to be the
label.

2) Backbone Architecture: We use 3 well-known architec-
ture varients for the sequence predicting task: CNN, LSTM
and TCN.
HMP CNN: We used the standard convolutional network
[16] to extract features.It contains 2 convolutional layers. The
output channel of the convolutional layers are respectively 8
and 16, and the kernel size of each convolutional layer is 3.
A fully connected layer is added at the end to regress the
extracted features into a velocity vector.



Fig. 4: Overview of our Global Path Planning System. (a) shows the discrete path based on grid map planned by Dijkstra. (b) is a schematic
diagram of LOPS and WRPS removing redundant points. (c) shows the interpolation. (d) is a schematic diagram of our Waypoints Selector
selecting waypoints on the analytical path.

HMP LSTM: We use a stacked unidirectional LSTM archi-
tecture [17]. It contains 3 layers with 16 units each. A fully
connected layer is also added at the end.
HMP TCN: Our HMP-TCN shares the same architecture
with RoNIN-TCN [8] while the dimension of the input and
the ouput is revised.

3) Training Method: In order to regress the predicted
velocity to the real velocity we collected, we designed a
loss function:

ṽhk = fHMP(v
h
k−Wh:k−1,F

h
k−Wh:k−1) (4)

x̃hk+1 = x̃hk + ṽhkT (5)

loss = L2(x̃
h,xh) (6)

Moreover, we use the optimizer called Adam [18] to
optimize the model parameters.

C. Robot Dynamics Model

Model-based control can generally result in superior per-
formance. However, it is difficult to precisely describe the
relationship between the quadruped robot’s velocity and the
tension it received. On the one hand, Quadruped robot has 12
DoF, which makes the dynamics model become complicated
to build manually. On the other hand, quadruped robot has
complicated motion controllers, which makes the impact
of the tensions which were received in past periods are
integrated, to influence its velocity. To accurately establish
the model, we use deep neural networks to regress the
relationship rather than designing the model manually.

1) Data Collection: Our sampling strategy was as fol-
lows: (a). Set the quadruped robot to walk at random
constant speeds. (b). Applying forces of varying magnitudes,
durations and directions to the quadruped robot using our
force controlling device. (c). The sampling frequency was
set to be 50 Hz. (d). The collected data includes the velocity
of the robot vr, the control input of the Quadruped Robot
Controller ur, the magnitude of the tension F , and the
direction of the leash el.

After the collection, we decomposed the tension into
orthogonal components:

Fr = Fel = [F rx , F
r
y , F

r
z ]

ᵀ (7)

We also filtered the data, and segment the data into the
form:

(vrk−Wh+1:k,u
r
k−Wh+1:k,F

r
k−Wh+1:k|v

r
k+1) (8)

Our Robot Dynamics Model shares the 3 well-known
architecture variants with our Human Motion Predictor, while
the dimension of the input is revised.

D. Waypoints Selector

The function of Waypoints Selector is to select certain
waypoints from the path generated by Dijkstra as human’s
target positions in next timesteps. The selected waypoints
should be correlated with the speed trend of different human
agents: the faster the speed of the human agent, the greater
the distance between the waypoints should be.

Before selecting the waypoints, we need to transform the
discrete path based on the grid map into a smooth analytical
path. We used two smoothers called LOPS and WRPS which
were proposed by Song et al. [13] to remove redundant
points. Then, we used the spline Interpolation Path Smoother
(IPS) to transform the remained path points into an analytical
path.

To predict human agent’s speed in next timesteps, our
Neural-Based Human State Predictor is used:

‖ṽhk‖ = ‖fHMP(v
h
k−Wh:k−1,F

h
k−Wh:k−1)‖ (9)

We assumed that the tension remains unchanged in the future
when predicting human’s speed.

Finally, we use our waypoints selector to select waypoints
on the smoothed analytical path as human agent’s expected
positions in next periods. The distances between the selected
waypoints satisfy:

‖xh∗k+1 − xh∗k ‖ = ‖ṽhk‖T (10)

E. Motion Planning System

1) Human Motion Planner: The function of Human Mo-
tion Planner is to use optimization algorithms to solve for
the best robot position and leash tension, in order to maxi-
mize the probability of human agents reaching the expected
position planned by the Waypoints Selector. MPC algorithm
consists of three parts: a predictive model, feedback correc-
tion, and optimization in range of a temporal window.



The model is already explained in section III.(B). We use
deep neural network to predict the relationship of human
agent’s motion and the received tension according to formula
4. While predicting human agent’s velocity in next Mh

timesteps, the prediction of the tension F̃ was set to be the
input when k > t rather than the feedback F.

Then, human agent’s position can be predicted according
to formula 5, and robot’s target position can be predicted
according to:

x̃r∗ = x̃h + leθ (11)

Next, to acquire the optimal control variables, we mini-
mized the cost function:

Jh(F̃h, l̃, θ̃) =

Mh−1∑
k=0

(‖x̃hk − xh∗k ‖ω1
(12a)

+‖F̃k+1 − F̃k‖ω2 + ω3(‖F̃k+1‖ − ‖F̃k‖)2 (12b)

+ω4(1− cos(θ̃k+1 − θ̃k)) + ω5(l̃k+1 − l̃k)2) (12c)

Fmin < ‖F̃k‖ < Fmax (12d)

lmin < l̃k < lmax (12e)〈
F̃k, F̃k+1

〉
≤ ϕF (12f)〈

eF̃k
, eθ̃k

〉
≤ ϕθ (12g)

‖x̃hk − xobsj ‖≥robs (12h)

‖x̃r∗k − xobsj ‖≥robs (12i)

where ‖x‖ω = 1
2ωx

ᵀx. ω1, ω2 ∈ R3×3, ω3, ω4, ω5 ∈ R are
weight coefficients, Fmin, Fmax, lmin, lmax, ϕF, ϕθ, r

obs are
the the thresholds.

As for the cost function, minimizing
∑Mh−1
k=0 ‖x̃hk − xh∗k ‖

promises the predicted trajectory x̃h to approach the
planned waypoints xh∗; minimizing

∑Mh−1
k=0 ‖F̃k+1 − F̃k‖

and
∑Mh−1
k=0 (‖F̃k+1‖ − ‖F̃k‖) promises the direction and

magnitude of the force to change smoothly; and minimizing∑Mh−1
k=0 (1− cos(θ̃k+1 − θ̃k)) and

∑Mh−1
k=0 (l̃k+1 − l̃k)2)

promises the direction and magnitude of the leash to change
smoothly.

Finally, through the optimization in range of a temporal
window, we obtained the optimal rope motor force F∗,
optimal relative distance l∗, and optimal relative yaw angle
θ∗. Robot’s target positions can be calculated according to:

xr∗ = xh∗ + l∗eθ∗ (13)

2) Robot Motion Planner: The function of Robot Motion
Planner is to plan the best control input for the Quadruped
Robot Controller, so that the robot can reach the expected
position planned by the Human Motion Planner.

The model is already explained in section III.(C). The
model described robot’s velocity after being towed:

ṽrk = fRDM(vrk−Wh:k−1,u
r
k−Wh:k−1,F

r
k−Wh:k−1) (14)

While predicting robot’s velocity in next Mr timesteps, the
prediction of the control input ũr was set to be the input
when k > t rather than the historic value ur. Robot’s position
can be predicted according to:

x̃rk+1 = x̃rk + vrkT (15)

Next, to acquire the optimal control variables, we mini-
mized the cost function:

Jr(ũr) =

Mr−1∑
k=0

(‖x̃rk − xr∗k ‖ω6
+ ‖ũrk‖ω7

) (16a)

‖ũrx‖∞≤urxmax (16b)

‖ũry‖∞≤urymax (16c)

‖ũrω‖∞≤urωmax (16d)

where ω6, ω7 ∈ R3×3 are weight coefficients,
urxmax, u

r
ymax, u

r
ωmax are the the thresholds.

As for the cost function, minimizing
∑Mr−1
k=0 ‖x̃rk − xr∗k ‖

promises robot’s predicted positions x̃r to approach the
planned target positions xr∗; and minimizing

∑Mr−1
k=0 ‖ũrk‖

promises the robot to walk efficiently.
Finally, through the optimization in range of a tempo-

ral window, we obtained the optimal input ur∗ for the
Quadruped Robot Controller.

IV. EXPERIMENTS

A. Experimental Settings

Our hardware platform is shown in Fig.5. Our sensors
include a LiDAR for SLAM, a RGB camera and encoder
for human localization, a force sensor for measuring leash
tension, and an IMU for measuring the euler angle of the
leash. The actuators include a quadruped robot and a leash
motor for traction. The leash motor guides the human agent
through the leash.

Robot Operating System(ROS) [19] is used for communi-
cation.

Fig. 5: Our hardware platform consists of a quadruped robot,
different sensors for perceiving the environment, and actuators to
execute the guiding task.



B. Results

1) Human Motion Prediction: To test the performance of
our Human Motion Predictor, we compared our HMP model
with the linear model proposed by Chen et al. [7] and the
GeoC model proposed by Nanavati et al. [6].

As shown in TABLE II, we compare the performance
of different models on our dataset using K-fold Cross-
Validation. We calculate the error and standard deviation
between the predicted human velocity and the ground truth
velocity for each model. The result shows that our models
has smaller error and standard deviation, indicating that our
models is closer to the ground truth velocity and have a more
stable performance. Thanks to its more advanced architec-
ture, our HMP-TCN model performed the best among the
three variants. It can be concluded that our model achieved
a significant performance improvement.

TABLE II: The Comparison of Human Motion Predicting Models

Model Name Joint Error, e Velocity Error
ex ey

Linear 6.153 (0.683) 7.389 (0.592) 4.917 (0.693)
GeoC 0.354 (0.074) 0.378 (0.046) 0.330 (0.057)

HMP
CNN 0.108 (0.295) 0.126 (0.261) 0.090 (0.328)

LSTM 4.669 (0.204) 7.315 (0.125) 2.023 (0.344)
TCN 0.036 (0.069) 0.051 (0.053) 0.022 (0.056)

Values are: Avg (StdDev). Bold Font represents best performance.

TABLE III: The Comparison of Robot Dynamics Models

Model Name Joint Error, e Velocity Error
ex ey

VDCM 7.152 (0.692) 8.169 (0.398) 6.135 (0.756)

RDM
CNN 3.546 (0.264) 4.886 (0.291) 2.206 (0.276)

LSTM 0.258 (0.127) 0.337 (0.143) 0.178 (0.111)
TCN 0.042 (0.059) 0.069 (0.061) 0.014 (0.049)

Values are: Avg (StdDev). Bold Font represents best performance.

2) Robot Dynamics Model: To test the performance of
our Robot Dynamics Model, we compared our model with
the Velocity Discount Coefficient Matrix(VDCM) model
proposed by Chen et al. [7]

As shown in TABLE III, we also use K-fold Cross-
Validation to compare the performance of different models
on the dataset. We calculate the error and standard deviation
between the predicted robot velocity and the ground truth
velocity for different models. Same as the results of NHMP,
our models achieve good performance in both accuracy and
stability, indicating that our models is effective in predicting
robot’s velocity.

C. Robot-Human Synchronization

To test the ability to adapt to individual differences among
human agents, we monitor the speeds of both human and
robot, and the relative distance between them during the
guiding process.

As shown in Fig. 6, it can be seen that the robot can
maintain a roughly similar speed with different human
agents, and the distance between them can be kept stable
during the guiding process. It can be concluded that our

BVIP guiding system can adapt well to individual differences
among different human agents.

Fig. 6: Different human agents are guided by our quadruped robot
equipped with our BVIP guiding system. Each of them has their
own comfortable walking speed, and our robot is able to keep up
with their speed.

D. Application for Real Robot

We apply the proposed guiding system to a real quadruped
robot. The quadruped robot platform uses a a robot called
WR1 developed by MiLAB Lab, as Fig 7. Test videos
will be shown in supplementary materials, and the results
show superior guiding performance in different people and
at different speeds.

Fig. 7: Our BVIP guiding system has been deployed on a robot
called WR1 developed by MiLAB Lab.

V. CONCLUSION

In this paper, we consider that the differences among
human agents require different guiding strategies. In our
proposed BVIP guiding system, we accurately model the
motions of different human agents, and the different effects
imposed on the robot, using AI-based HMP and RDM
for sequence prediction. We compared our models with
previous models and demonstrated that our models achieved
outstanding performance. To further adapt the robot to in-
dividual differences, we propose the waypoints selector to
correct the global path. It was shown that our BVIP robot
can synchronize with the speed of different human agents
and maintain a stable distance. In summary, our system



successfully addressed the adaptation problem of individual
differences in the BVIP guiding task. In future work, we
will improve the system so that it can adapt to individual
differences without pre-collected data.
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